Our model of an open-closed conduit characterized by a critical flow rate of magmatic fluids is in partial agreement with the observations at Galeras. Although we have identified a resonator mechanism different from the Helmholtz resonator and different pressurization rate, key roles in generating tornillos are played by a choking conduit and a high magmatic pressure gradient, which in turn generates a critical flow rate. We may further speculate that the increased signal duration, followed by a decrease just before eruption27 may indicate an increased flow rate due to a higher pressure gradient within the conduit, followed by the breech in the obstructed conduit, leading to a temporary release of the internal pressure before the eruption commences. Therefore, our findings can be applied in understanding magmatic pressure gradients and flow rate within open-closed conduit as tornillo events are observed and this information can be used to understand whether the eruption is explosive and the rate at which magmatic fluids are ejected.